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Abstract—I/O is the critical bottleneck for data-intensive scien-
tific applications on HPC systems and leadership-class machines.
Applications running on these systems may encounter bottlenecks
because the I/O systems cannot handle the overwhelming inten-
sity and volume of I/O requests. Applications and systems use
I/O forwarding to aggregate and delegate I/O requests to storage
systems. In this paper, we present two optimization techniques
at the I/O forwarding layer to further reduce I/O bottlenecks
on leadership-class computing systems. The first optimization
pipelines data transfers so that I/O requests overlap at the
network and file system layer. The second optimization merges
I/O requests and schedules I/O request delegation to the back-end
parallel file systems. We implemented these optimizations in the
I/O Forwarding Scalability Layer and them on the T2K Open
Supercomputer at the University of Tokyo and the Surveyor Blue
Gene/P system at the Argonne Leadership Computing Facility.
On both systems, the optimizations improved application I/O
throughput, but highlighted additional areas of I/O contention
at the I/O forwarding layer that we plan to address.

Index Terms—I/O forwarding; Parallel file systems;
Leadership-class machines

I. INTRODUCTION

Current petascale and leadership-class machines, such as
the IBM Blue Gene/P and Cray XT systems, consist of
several hundreds of thousands of processing elements [1].
Future exascale systems are expected to contain millions of
processing elements [2]. While the computational power of
supercomputers increases, the I/O system for these machines
is often less powerful. Data access rates to hard disks are
not improving as quickly as multicore processor computation
rates, and the increasing number of processing elements in the
systems can generate an overwhelming volume of I/O requests.

As applications continue scaling, additional capabilities are
required to support the increased number of I/O requests
generated. For example, a potential I/O bottleneck can occur
for scientific applications that alternate between computation
phases and I/O phases [3] on systems with large imbalances in
computation and I/O capabilities. In the I/O phase, applications
often write snapshot and checkpoint data regularly. If a large
number of application processes simultaneously enter the I/O

phase, the I/O subsystem must handle each application request
quickly to ensure high performance. Increases in I/O request
volume require additional processing overhead for the I/O
system and can decrease the performance of applications and
overload the system.
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Fig. 1: Current Parallel I/O Software Stack

Current leadership-class systems provide a multilayer soft-
ware environment to support I/O from scientific applications.
Figure 1 shows a multilayered environment that includes
high-level scientific I/O libraries [4], [5], parallel I/O using
MPI-IO [6], [7], POSIX I/O parallel file systems [8]–[10],
and storage devices. While this environment can accelerate
parallel application I/O for smaller-scale systems, it does not
adequately support the demands of emerging and existing
leadership-class systems with large numbers of processing
elements.

The goal of I/O forwarding is to eliminate this bottleneck by
reducing the number of I/O requests issued to a storage system.
Figure 2 illustrates where the I/O forwarding layer exists in
the I/O system software stack for HPC environments. With
the I/O forwarding layer, all I/O requests are forwarded to
dedicated processing elements, known as I/O nodes. When an
I/O node receives I/O requests, it redirects them to the back-
end parallel file systems. This strategy reduces the number of
clients accessing the file systems and can potentially reduce the
file system traffic by aggregating and reordering I/O requests.



Several systems, including the IBM Blue Gene platforms, use
I/O forwarding to reduce this bottleneck, but they have not
addressed additional opportunities to improve I/O forwarding
performance. Moreover, these existing I/O forwarding systems
are tightly coupled to vendor hardware or software stacks and
are not portable to other HPC systems.
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Fig. 2: Parallel I/O Software Stack with I/O Forwarding

The I/O Forwarding Scalability Layer (IOFSL) [11] is a col-
laborative project that is developing an open-source, portable,
high performance I/O forwarding solution for leadership-class
systems. In a previous study [12], we described our IOFSL
prototype, presented the IOFSL data access interface, and
demonstrated the prototype’s capabilities on a small Linux
cluster. In this paper, we extend that work and focus on im-
plementing and evaluating optimizations at the I/O forwarding
layer. One optimization provides an I/O pipeline capability
that overlaps network communication and file system I/O
requests. Another optimization provides I/O request aggrega-
tion techniques to coalesce several I/O requests into fewer
requests when possible. The contributions presented in this
paper include:

• Description and evaluation of an I/O pipeline mechanism
for the I/O forwarding layer that overlaps file system and
communication layer I/O requests.

• Description and evaluation of an I/O aggregation, merg-
ing, and scheduling mechanism for I/O forwarding sys-
tems that reduces the number of independent, non-
contiguous file systems accesses by applications.

• Demonstration of a portable, high-performance I/O for-
warding layer on an IBM Blue Gene/P system and a
Linux cluster.

• Performance comparisons of IOFSL and existing HPC
I/O software stacks, including the I/O forwarding infras-
tructure available on the IBM Blue Gene/P.

In this paper, we describe our recent research and develop-
ment work for the IOFSL project and present our evaluation of
two performance optimizations for IOFSL. Section II describes
the goals, architecture, capabilities, and our implemented op-
timizations for IOFSL. Section III presents the details of these
optimizations for IOFSL. Section IV discusses our evaluation
and experimental results. Section V summarizes work related

to IOFSL. Section VI presents our conclusions and describes
future work.

II. I/O FORWARDING SCALABILITY LAYER

I/O forwarding is an important piece of the leadership-class
system I/O stack. Until recently, no portable, open source I/O
forwarding implementation was available. Vendors provided
I/O forwarding software integrated with a platform’s software
stack. For Cray XT systems, Cray provides the Cray Data
Virtualization Service for I/O forwarding capabilities. The
IBM Blue Gene platforms provide I/O forwarding capabilities
through the Control and I/O Daemon (ciod). Recently, the
I/O Forwarding Scalability Layer project [11] has provided
a portable, open-source, scalable I/O forwarding framework
for high-performance computing systems. In the following
section, we provide a brief overview of the IOFSL project,
a description of the current implementation, and highlight
potential optimizations to improve IOFSL performance.
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Fig. 3: IOFSL Software Stack

The original IOFSL software was derived from research
completed as part of the ZeptoOS I/O Daemon (ZOID) [13]
project at Argonne National Laboratory. The ZOID project
developed the file system-independent ZOIDFS protocol, func-
tion call forwarding infrastructure for the ZeptoOS operating
system, and a high-performance transport layer using the Blue
Gene/P tree network. IOFSL builds on this work and focuses
on developing a portable, high-performance I/O forwarding
infrastructure. The IOFSL portability improvements include
supporting multiple application I/O interfaces, providing a
portable communication layer across multiple network types,
integrating with common HPC file systems, and providing
portable optimizations to sustain I/O forwarding performance
on a variety of HPC systems.

Figure 3 illustrates the current IOFSL architecture. For
network portability, IOFSL uses the Buffered Message Inter-
face (BMI) [14]. BMI provides a common interface for data
transmission across a variety of networks, including TCP/IP,
Myrinet, Infiniband, Cray Portals, and the Blue Gene/P tree
network using ZOID. BMI also provides several features that
benefit parallel I/O, such as sending noncontiguous buffers in
a single network transfer.

Applications communicate I/O requests with IOFSL servers
using the ZOIDFS protocol. ZOIDFS provides a file system-
independent protocol for forwarding application I/O requests.
The protocol is stateless, provides portable and distributable



file handles instead of file descriptors, and provides I/O
operations optimized for parallel I/O, such as list I/O read
and write operations [15]. XDR is used to encode and decode
the ZOIDFS protocol data between the application and the
IOFSL server.

IOFSL servers interact with back-end file systems using file
system dispatchers that implement the ZOIDFS API. IOFSL
issues all file system I/O operations through these dispatchers.
The dispatchers use the client interfaces (when available)
exposed by some parallel file systems for data access. For
example, the PVFS2 IOFSL dispatcher uses the PVFS2 client
library to communicate directly with a PVFS2 file system,
through the PVFS2 kernel module. Currently, IOFSL provides
dispatchers for POSIX compatible file systems, libsysio [16],
and PVFS2. We have tested the IOFSL dispatchers on several
common HPC file systems, including PVFS2 [8], [17], Lustre
[9], and GPFS [10].

IOFSL also provides several application I/O interfaces.
Applications using MPICH2 and MPI-IO can leverage the
ROMIO ZOIDFS driver. This driver translates MPI-IO re-
quests into the ZOIDFS protocol and can leverage MPI-
IO optimizations, such as two-phase collective I/O [6] and
data sieving [7]. For applications that use the POSIX I/O,
a ZOIDFS FUSE client is available. For systems that use
lightweight operating systems or do not support the FUSE
client, a libsysio client library with ZOIDFS support is avail-
able. To use the libsysio client library, applications compile in
the libsysio library with ZOIDFS support. Application POSIX
I/O calls are intercepted by the library and translated into
equivalent ZOIDFS API invocations. IOFSL support is also
available to high-level I/O libraries that can use the IOFSL
client interfaces. For example, the ROMIO ZOIDFS driver can
be used with the Hierarchical Data Format Version 5 (HDF5)
[4] library or the PNetCDF [5] library so that applications
using these libraries can communicate with IOFSL.

The IOFSL software stack can be improved in several ways.
In this paper, we implement and evaluate the following request
aggregation and data transfer optimizations for IOFSL. The
IOFSL server uses a thread-based task model to service client
I/O requests. As the IOFSL server receives client requests, the
requests are converted into tasks. The IOFSL server manages
task execution over the lifetime of the client request. The initial
IOFSL implementation treated these tasks as independent
requests and made no attempt to aggregate request activities
or optimize access to the back-end file system. We improved
this task model by allowing multiple requests to leverage
the ZOIDFS list I/O mechanism and merging adjacent or
overlapping requests to reduce the number of file system
accesses.

Another improvement focus is on data transfers. The orig-
inal IOFSL implementation transmits large data chunks be-
tween clients and servers. This behavior forces the IOFSL
servers and clients to wait for all pending data transmissions
before processing any of the transmitted data. We can improve
the data transmission between clients and servers by breaking
large data segments into smaller data segments and beginning

processing the smaller data segments as soon as they are
received. This behavior would allow the IOFSL server to
overlap I/O operations and reduce blocking I/O requests.

III. OPTIMIZATIONS AT THE I/O FORWARDING LAYER

We implemented two optimizations in IOFSL to improve
application I/O performance. The first optimization is a
pipeline transfer mechanism. The second optimization pro-
vides I/O request scheduling for IOFSL. Both optimizations
are portable and have several parameters to adjust IOFSL run-
time performance. The following subsections describe these
optimizations in detail.

A. Pipeline Transfers
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Fig. 4: Pipeline Data Transfer Methods

The goal for the pipeline transfer optimization is to improve
data transfer performance between the application and the I/O
forwarding servers. Pipeline transfers overlap application I/O
requests and file system I/O requests. Overlapping provides
two benefits. The first benefit is that the I/O forwarding
software can simultaneously post and process multiple data
transfers. The second benefit is that data transfers exceeding
the amount of memory available to the I/O forwarding soft-
ware are split into smaller, more manageable chunks of data.
This behavior enables processing large data transfers without
modification of application or file system I/O behavior.

Multiple methods exist for providing pipeline data transfers.
Figure 4 illustrates these methods and describes the behavior
of non-pipeline transfers, serial pipeline transfers, and parallel
pipeline transfers. The non-pipeline transfer method processes
the requested data buffers as contiguous chunks of data. This
method does not attempt to split large data requests into
smaller chunks. Using the non-pipeline method requires that
software components contain the entire data segment before it
can begin to process the data segment.

The serial pipeline method allows software components to
overlap send and receive operations, but it forces in-order
acknowledgments of data operations. By overlapping the I/O
operations, the I/O forwarding software can issue multiple
asynchronous I/O operations in parallel and monitor the op-
erations for completion. The I/O forwarding layer can use
the idle time generated by the nonblocking I/O for additional
data processing tasks. The in-order processing ensures that
applications or file systems receive data in order, but it can
underutilize resources while waiting for the next in-order data



segment to be processed. When the next in-order data segment
is not available, the executing I/O operation blocks or stalls
the entire processing pipeline until it is available.

The parallel pipeline mode relaxes the in-order acknowl-
edgment constraint of the serial pipeline mode. This approach
allows the I/O forwarding server to process and issue I/O re-
quests out of order, thereby preventing active I/O requests from
stalling pending I/O requests within the same pipeline while
processing resources are available. Although this approach can
achieve higher I/O request processing throughput, it requires
additional complexity in the I/O forwarding layer to monitor
requests and correctly distribute data.

Several parameters can be configured for IOFSL pipelines.
One parameter is the size of the pipeline buffer. This parameter
is implemented for both the client and the server, so that both
software components agree on the maximum pipeline buffer
size to transfer and how to split large data streams into smaller
chunks. Large pipeline buffers increase network throughput,
but the upper limit of the pipeline size is restricted by the BMI
transport layer limitations. Another parameter is the size of the
IOFSL server memory pool. This parameter limits the number
of simultaneous pipeline transfer buffers that can be posted
by the IOFSL server. Configuring a large memory pool with
many pipeline buffers allows clients to post more simultaneous
data transfers, but it may allow IOFSL to consume too much
memory on the I/O forwarding node. Overallocating memory
may decrease IOFSL performance through excessive paging
or may crash I/O forwarding nodes if sufficient memory is
not available.

B. Request Scheduler

The goal of request scheduler optimization is to improve I/O
accesses between the I/O forwarding server and the global file
systems. In the original IOFSL software design, I/O requests
are issued as they arrive. This situation can result in many non-
contiguous access to the global file system and can reduce
application I/O performance. The IOFSL request scheduler
aggregates and reorders I/O requests to reduce the number
of noncontiguous file system accesses.

Adding the request scheduler to the I/O forwarding layer
provides two benefits. The first benefit is that the I/O for-
warding scheduler can exploit the global view of parallel
applications to sort and merge I/O requests more effectively
than an OS kernel currently can. For example, the Linux OS
kernel has similar request scheduling capabilities for local file
accesses, but it cannot efficiently sort and merge I/O requests
because HPC file system drivers often bypass the kernel. The
second benefit is that scheduling and merging the requests
at the I/O forwarding server requires less overhead than at
the parallel file system. The I/O forwarding layer reduces the
number of clients that access the file system because the I/O
forwarding servers delegate I/O requests for applications. If
the I/O forwarding server analyzes all client requests that it
will delegate and merges the requests when possible, the server
can reduce the total number of I/O requests issued to the file
system. Without the request aggregation at the I/O forwarding

layer, I/O requests would fill the file system request queues,
and there would be no opportunity to merge requests.

As the IOFSL server receives the I/O requests, they are
queued in the request scheduler. The request scheduler at-
tempts to merge multiple requests into a single I/O request.
After the scheduling interval has elapsed, the scheduler issues
the available I/O requests. Since the request scheduler is
independent of the file system implementation and decoupled
from the transport layer, the request scheduler is portable to
systems that support IOFSL.

Arguably, the additional processing from the request sched-
uler can potentially consume significant computational re-
sources and diminish I/O performance under certain applica-
tion I/O loads. For example, changing the request scheduling
algorithm can affect I/O request throughput and latency de-
pending on how the scheduling algorithm prioritizes requests.
The choice of request merging algorithms and data structures
can impact the time to issue the merged I/O requests. As the
number of requests increases, the cost of request-merging algo-
rithms may become prohibitively expensive. In the following
subsections, we describe the algorithms and data structures
developed to support the request scheduler and how they affect
the request scheduling within the I/O forwarding layer.

1) FIFO and Handle-Based Round-Robin Scheduling: We
implemented two request schedulers in IOFSL. The first sched-
uler uses a first in, first out (FIFO) scheduler that issues I/O
requests as it receives them. This approach does not attempt
to merge or aggregate requests. The second request scheduler
approach uses the handle-based round-robin (HBRR) schedul-
ing algorithm [18], [19]. This scheduler optimizes file system
access by merging I/O requests for each file handle using a
round-robin scheduling strategy.

H H H H H

Read Read Write Read Read

Pick N Requests
and Issue I/OQ

Fig. 5: Handle-Based Round Robin Scheduler

Figure 5 illustrates how the HBRR scheduler functions. The
request scheduler has a global queue (called Q) and manages
the I/O request for each file handle. When new I/O requests
arrive at the scheduler, the scheduler first checks whether the
corresponding file handle is in the request queue, Q. If the file
handle exists in Q, the scheduler updates the file handle with
the new I/O request. If the file handle does not exist in Q,
the scheduler adds a new file handle to Q with the new I/O
request. Separate entries in the queue are created for read and
write operations on the same file handle.

When issuing I/O requests, the scheduler removes requests
from the file handles stored in the scheduler request queue, Q,
in a round-robin fashion. The number of I/O requests removed



from Q in each round is a configuration parameter referred to
as the quantum. At the start of the round, the scheduler pops
a number of I/O requests from the first file handle. It does
not remove more requests than specified by the quantum. If
the quantum was exhausted but has pending I/O requests, the
current handle is moved to the back of Q. If all I/O requests
are removed from the file handle, the scheduler removes I/O
requests from the next handle in Q. This process is repeated
until the quantum is exhausted or no requests are left in Q.

The dequeued requests are issued to the parallel file system
using the list I/O ZOIDFS interface of the IOFSL file system
dispatcher layer. This approach allows IOFSL to issue multiple
requests from different clients with one file system call as
long as the requests belong to a single file handle read or
write operation. This optimization reduces the number of file
system operations IOFSL issues to the file system.

2) Brute Force and Interval Tree Request Merging: As
the request scheduler assigns requests to file handles in the
scheduler queue, the scheduler can optimize I/O accesses
by merging noncontiguous requests. Since the requests are
separated by file handle and I/O operation type, the scheduler
can use the I/O request offset and size data to determine how
new I/O requests relate to existing I/O requests and whether
the requests can be combined. For example, the scheduler can
examine the current I/O requests assigned to a file handle. If
a new request is adjacent to or overlaps an existing request,
the scheduler can combine the requests to reduce the number
of accesses to the file system.

We developed two approaches to merge pending I/O re-
quests at the I/O forwarding layer. The first approach stores
the pending requests for a file handle operation in a vector. It
attempts to combine requests by comparing the new request
to the existing requests for overlapping or adjacent regions.
We refer to this approach as the brute force request merg-
ing strategy within IOFSL because of the exhaustive search
performed for the new request against all pending requests.
While this approach involves a simple implementation, the cost
of merging many requests becomes prohibitively expensive
because of the comparison strategy.

The second request merging approach we developed for
IOFSL is the interval tree request merger. This approach uses
an interval tree based on an augmented red-black tree [20]
for merging adjacent or overlapping requests. The red-black
tree provides a balanced tree with O(log n) cost insert, search,
and remove operations. The interval tree finds the location
of file data based on the I/O request offset and size data
at the algorithmic cost of the red-black tree operations. This
provides a more efficient merging method for large numbers
of I/O requests, but it is a more complex strategy and may be
unnecessary for smaller numbers of I/O requests. In this paper,
we use the interval tree request merger in our evaluations.

IV. PERFORMANCE EVALUATION

In this section, we present our evaluation of the IOFSL
optimizations. We evaluated these optimizations on a Linux
cluster and an IBM Blue Gene/P platform. For each platform,

we describe the system configuration and the experimental
setup and provide an analysis of our observed results.

A. Evaluation on T2K Cluster

TABLE I: Specification of the T2K (University of Tokyo)
Cluster

Node Spec
CPU AMD Barcelona, 2.3 GHz, 4 Cores
# Sockets 4
Memory 32GB
Local Disk SATA (Read: 49.52 MB/sec, Write/39.76 MB/sec)
Interconnects Myrinet 10 Gbps * 2
Ethernet Intel E1000 (1 Gbps) * 2
OS RHELS 5.1 (Kernel 2.6.18-53)
glibc version 2.5
File System EXT3

IOFSL was evaluated on 32 nodes of the University of
Tokyo’s T2K research cluster [21]. All nodes in the T2K
cluster are connected by a single Myrinet-10G switch. The
specification for individual cluster nodes is shown in Table I.
The read and write bandwidth of the local disks in the cluster
nodes was measured by using Bonnie++ [22].

MPICH2 [23], version 1.1.1p1, was the default MPI used
for the T2K cluster experiments. The Myrinet-10G network
was used for the parallel benchmark experiments using the
MPICH2 ch3:nemesis:mx device. MPICH2 was configured
to use ROMIO for MPI-IO support. The IOFSL driver and
PVFS2 drivers were enabled within ROMIO.

PVFS2 version 2.8.1, with additional patches for the BMI-
MX driver, was used for this evaluation. PVFS2 was config-
ured to use the “directio” TroveMethod. This configuration
bypasses the OS buffer cache and our measurements show
the actual disk performance. We configured PVFS2 to use the
Myrinet-10G network through BMI-MX transport driver. This
configuration used four nodes as PVFS2 metadata nodes and
data nodes. For these experiments, we set the PVFS2 stripe
size to 256 KB.

We deployed IOFSL on one of the nodes in the PVFS2
cluster with an 8 MB pipeline size. IOFSL used the PVFS2
dispatcher for issuing I/O requests to the PVFS2 file system.
The PVFS2 dispatcher allows direct access to the PVFS2
file system instead of accessing the file system through the
PVFS2 kernel module. This eliminates the extra memory
copies through the I/O path. We used the remaining 28 nodes
for running applications.

1) IOR Benchmark: We measured the performance char-
acteristics of IOFSL for various message sizes using the
IOR benchmark. In this experiment, 128 processes concur-
rently write and read data into the same file. The ROMIO-
PVFS2 driver and the ROMIO-IOFSL driver were used for
applications to communicate with the IOFSL server. IOFSL
dispatched the requests to the backend PVFS2 file system.
The FIFO and HBRR request schedulers were also used in
this evaluations.
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Figures 6 and 7 show the results for this experiment. For
large messages (over 8 MB), FIFO performs the best. The
FIFO scheduler had a 28.8% write improvement and 29.5%
read improvement when compared to PVFS2 with a 64 MB
block size.

For small messages, HBRR performs better than the FIFO
scheduler. Since HBRR issues list I/O requests, it is able
to improve the performance for small messages. For 32KB
message sizes, the improvement is 48.6% for writes and 40.0%
for reads. For large messages, FIFO outperforms HBRR.
HBRR performance is also worse than PVFS2 for some cases.
Thus, processing many I/O requests within the IOFSL request
scheduler becomes a bottleneck.

While we confirmed that list I/O was effective in IOFSL,
request merging did not have a significant impact. We believe
the reason is that merging of contiguous requests rarely
happens in the IOR workload. In this workload, each process
issues contiguous requests, but I/O calls are synchronous.
The next request is issued after the previous request is done.
When the second request arrives, IOFSL has already issued the
previous request and it is no longer in the scheduler’s queue.
For I/O workloads that share the same I/O pattern evaluated

in this experiment, IOFSL request merging will not be able to
combine the subsequent I/O requests from the same process.
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Fig. 8: BTIO Benchmark on T2K Tokyo

2) NAS BTIO: In the next experiment, we measured the
scalability of IOFSL for various application processes to
IOFSL server ratios using the block-tridiagonal benchmark
(BTIO) [24]. BTIO is included in the NAS Parallel Bench-
mark suite, version 3.3. This benchmark evaluates the write
throughput of parallel I/O for various process counts. Each
BTIO process is responsible for multiple Cartesian subsets of
the entire data set, whose number increases as the square root
of the number of processors participating in the computation.
BTIO provides three options for how to issue the requests:
MPI-IO with collective I/O, noncollective MPI-IO, or Fortran
POSIX I/O. Collective I/O was used for this experiment.

BTIO provides different input problem sizes (A-D). We
used class C, an aggregate 6.8 GB write. The amount of data
written by each process decreases as the number of processes
increases because the aggregate write amount is fixed. The
BTIO workload uses a common scientific application I/O
pattern where the compute phase and the I/O phase alternate.

We measured the I/O bandwidth for BTIO using IOFSL and
adjusted the number of processes. Figure 8 presents our results
for this experiment. In these tests, IOFSL using the FIFO
scheduler performs better than direct PVFS2 access (14.2%
to 38.3% improvements). Since this test used collective I/O,
IOFSL request merging did not improve performance. This
result is similar to the results with large-message cases in the
IOR benchmark.

B. Evaluation on Blue Gene/P

The optimizations presented in this paper were also eval-
uated on the Surveyor IBM Blue Gene/P system at the
Argonne Leadership Computing Facility (ALCF). Surveyor is
a 4,096-core research and development Blue Gene/P platform.
Surveyor’s storage system consists of four file servers running
PVFS and a DataDirect Networks S2A9550 SAN. Surveyor
contains 16 partitions consists of 64 quad-core compute nodes.
Each partition has a dedicated quad-core I/O node (ION).
Compute nodes forward system calls to the ION over the Blue



Gene/P tree network when using the default IBM software
stack. Figure 9 shows the I/O architecture of the ALCF BG/P
systems.

Fig. 9: IBM Blue Gene/P I/O System

When using the default IBM software stack on Surveyor,
the compute nodes running the IBM Compute Node Kernel
(CNK) forward system calls over the Blue Gene/P tree network
to the IBM Control and I/O Daemon (ciod) running on the
ION. Since the file I/O system calls are forwarded to the ION,
ciod also provides I/O forwarding capabilities for applications
running on the Blue Gene/P.

In the ZeptoOS environment it is not possible to use ciod.
When we used the ZeptoOS [25] compute node kernel and
I/O node kernel, we used the IOFSL software stack to provide
I/O forwarding support. When IOFSL is used on Surveyor or
other Blue Gene/P systems, a BMI driver for ZOID is available
as a high performance alternative to the TCP/IP BMI driver.
The ZOID BMI driver implements BMI’s device layer API
using the Blue Gene/P tree network. Figure 10 illustrates the
performance of the BMI drivers and Blue Gene/P network
throughput on Surveyor using a BMI ping-pong benchmark.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1  4  16  64  256  1024  4096

B
an

dw
id

th
 (

M
B

/s
)

Buffer Size (KB)

BMI TCP/IP
BMI ZOID

CNK BG/P Tree Network
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1) Comparison with ciod: We compared IOFSL with ciod
using the IOR benchmark. For these experiments, we used

256 compute nodes and 4 I/O nodes. One IOR process was
run on each compute node in these experiments. IOFSL and
ciod accessed the back-end PVFS2 file servers using the
PVFS2 kernel module. Unlike the T2K cluster experiments,
IOFSL used the POSIX file system dispatcher. Since the write
throughput measurements from this experiment yielded similar
results to the read measurements, we focus our evaluation on
the IOR read measurements, as shown in Figure 11.
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Fig. 11: IOR Benchmark on Surveyor (Read)

For the 128 KB to 16 MB tests, IOFSL performs better than
ciod. The performance improvement is as high as 42.0% for
the 256 KB test case. For larger test cases (64 MB buffers and
larger), we observed a 38.5% degradation in IOFSL perfor-
mance compared to ciod. During the 64 MB tests, we observed
high computation loads for the ION system CPUs. Because of
these processing loads, we believe that IOFSL processing on
the ION is currently the bottleneck for large buffers. IOFSL
also exhibits considerable performance variations, as can be
seen in the large error bars plotted in Figure 11 for IOFSL.
The throughput for the initial IOR benchmark iteration was
much larger than for subsequent iterations.

Currently, the IOFSL server uses a thread-based model for
managing I/O requests. The experimental results presented in
Figure 11 were conducted with a thread pool consisting of 32
threads. Since the number of threads is larger than the number
of cores on the ION (4 cores), we believe thread contention
negatively affects IOFSL performance.

Using the same IOR benchmark setup, we evaluated the
impact of IOFSL thread pool size on I/O performance. Figure
12 shows the results of this experiment. Considerable perfor-
mance degradation occurs for the large messages with a thread
pool of size 32. The 16-thread-pool case had less performance
degradation than the 32-thread-pool case. When comparing the
results in Figure 12 to the results in Figure 11, the 16 thread
pool case performs as well as ciod for message sizes up to
32 MB. For write operations (Figure 13), the 16 thread pool
case shows severe performance degradation in small messages
up to 8 MB. For data transfers 8 MB and larger, IOFSL uses
pipeline data transfers and this appears to provide a boost for



the 16-thread-pool case.
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Fig. 12: The Impact of IOFSL Thread Count on Surveyor
(Read)
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Fig. 13: The Impact of IOFSL Thread Count on Surveyor
(Write)

To address this problem, we developed an event-driver
IOFSL server. This new server uses a thread pool with a thread
count that matches the number of available cores. Instead of
treating the I/O requests and IOFSL tasks as single units of
work, we developed a series of state machines with many
smaller units of work. These smaller units of work execute
when computational resources are available and use a callback
mechanism to advance the execution of a state machine for
the I/O request. We believe this architecture will improve the
thread contention issues we observed on the Blue Gene/P I/O
nodes. Our current research focuses on evaluating this new
server architecture against the thread-model discussed in this
paper.

V. RELATED WORK

Several examples exist of I/O forwarding services similar to
IOFSL. The Computational Plant (Cplant) [26] at Sandia Na-
tional Laboratories used an I/O forwarding layer. The Cplant

compute nodes forwarded the I/O requests to yod servers,
which performed the actual I/O on behalf of the compute
nodes. The IBM Blue Gene series uses I/O forwarding to ship
I/O operations from compute nodes to dedicated I/O nodes
[27]. I/O operations from the compute nodes are shipped to a
dedicated I/O node over a collective network. The ciod daemon
running on the I/O nodes performs I/O to the back-end parallel
file systems. Cray has a similar service for the Cray XT series
of computers, called the Cray Data Virtualization Service.
ZOID [13] is an open-source I/O forwarding framework for
IBM Blue Gene/P. ZOID is tightly coupled to the Blue Gene
series of supercomputers and is not portable to other HPC
systems, such as the Cray XT series or Linux clusters. Condor
[28] provides a remote system call interface that allows users
to issue remote I/O calls.

Several studies evaluate scheduling algorithms at the parallel
file systems layer [29], [30]. Qian et al. proposed a network
request scheduler for a large-scale Lustre parallel file system
[19]. They describe a quantum-based and object-based round-
robin scheduling algorithm to reorder the I/O requests per data
object at the server side. Their simulation results show that
the scheduling algorithm increases the I/O performance up to
40%.

Gather-arrange-scatter [31] is a node-level request schedul-
ing scheme intended to improve parallel write performance.
Using this method, applications issue I/O requests asyn-
chronously, and an intermediate server buffers them. If the
length of the buffer exceeds a specified limit, then the buffered
requests are reordered, merged, and scattered to the back-end
parallel file systems. This scheme enables the intermediate
servers to aggregate the requests from the same application
process. The method improves the write performance, but it is
not portable to applications that do not support asynchronous
I/O.

VI. CONCLUSION

I/O is the critical bottleneck for data-intensive scientific
applications in HPC systems. I/O forwarding attempts to
bridge the gap between computation and I/O by regulating the
file system traffic. Performance optimizations are necessary at
the I/O forwarding layer in order to sustain high-performance
I/O. In this paper, we propose several optimization techniques
for the I/O forwarding layer. The first is a pipeline transfer,
which enables the server to overlap the receiving and sending
of the data buffers. The second is a request scheduler, which
aggregates and reorders the I/O requests for optimized I/O to
the back-end parallel file system.

IOFSL was evaluated on two systems. We first evaluated
on 32 nodes of the T2K Tokyo Research Cluster. For large
requests using the IOR benchmark, IOFSL improves the
performance up to 28.8% for writes and up to 29.5% for
reads. For small requests, the scheduler issues list I/O requests
from individual requests and improves performance 28.8% for
writes and 29.5% for reads for 32 KB messages. With the
BTIO benchmark, IOFSL performs better than direct access
to PVFS2: we observed improvements of 14.2% to 38.3%.



These results show that I/O forwarding is effective in cluster
environments.

IOFSL was also evaluated on the ALCF Blue Gene/P en-
vironment. IOFSL shows considerable performance improve-
ments over IBM’s default I/O forwarding implementation. For
256 KB reads, we observed a performance improvement of
42.0%. However, we observed performance degradation in
IOFSL for especially large messages, and it was revealed
that thread contention within the IOFSL server affects per-
formance.

We have identified several areas of future work. One area
we are evaluating is to an event-driven server architecture.
Currently, IOFSL I/O requests are represented as individual
threads. We believe this model is the cause of thread con-
tention in the IOFSL server. The new server architecture uses
a thread pool, smaller units of work, and a callback mechanism
to limit the number of threads executing simultaneously and
reduce competition for resources. We are also developing a
collaborative caching layer for IOFSL. This layer provides a
temporal cache for accessing data shared across the application
or temporarily storing pending data requests. Furthermore,
we are evaluating IOFSL on additional systems including
the Jaguar Cray XT4 and XT5 systems at the Oak Ridge
Leadership Computing Facility.
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